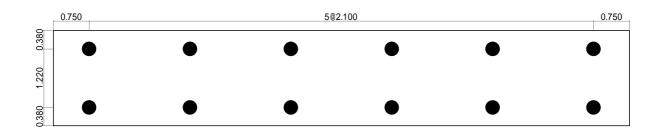
1. 設計条件

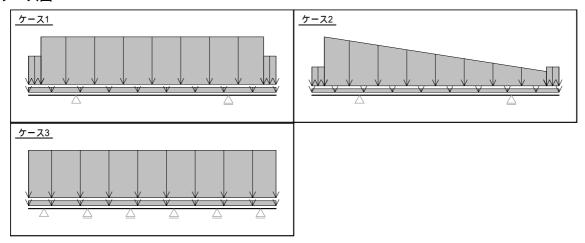

1.1 基礎スラブ条件

項 目	記号	値	単位	備考
躯体単位体積重量		24.500	kN/m³	
基礎スラブ幅	B _s	1.980	m	
基礎スラブ延長	Ls	12.000	m	
基礎スラブ厚	T _s	0.350	m	
杭の貫入深	Τp	0.100	m	

1.2 杭条件

項 目	記号	値	単位	備考
杭の許容支持力	R _a	244.310	kN/本	
杭 外 径	D	300.0	mm	
杭列数(幅方向)	B _{Num}	2	本	
杭行数(延長方向)	L _{Num}	6	本	
杭の配置条件		等間隔配	置	任意間隔配置
項 目	記号	値	単位	備考
幅方向杭ピッチ	Bpit	1.220	m	
延長方向杭ピッチ	L Pit	2.100	m	

1.3 杭配置図



2. 荷重条件

2.1 荷重設定

	荷重設定条件		簡	第 易 設 定	2		詳細設定			
荷重	荷重名称		上載荷重	荷重強度	鱼度(kN/m²)		作用範囲(m)		偏心距離	
No	19里口彻	(kN/m)		左	右	左	から	右から	(m)	
1	輪荷重頂版中央時			84.930	84.93	0	0.100	0.100		
2	輪荷重頂版端部時			131.661	38.19	9	0.100	0.100		
3	左側載荷重			50.455	50.45	5	0.000	1.880		
4	右側載荷重			50.455	50.45	5	1.880	0.000		
5	延長方向全重		979.909				0.000	0.000	0.000	
No				検討方向						
1	ケース1							幅方向	Ì	
2	ケース2						幅方向			
3	ケース3							鉛直方「	句	
	荷 重 名 称	1			2			3		
検討(の方向		幅		幅			延長		
スラ	ブ自重									
輪荷	重頂版中央時				-			-		
輪荷	重頂版端部時		-	-				-		
左側載荷重								-		
右側	馘荷重							-		
延長7	方向全重		-		-					

2.2 荷重ケース図

2.3 基礎スラブ自重の算出

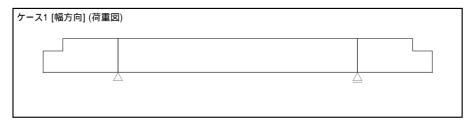
基礎スラブ自重 $W_s = B_s \cdot L_s \cdot T_s \cdot = 1.980 \times 12.000 \times 0.350 \times 24.500 = 203.742$ (kN) 自重による荷重強度 $q_s = T_s \cdot = 0.350 \times 24.500 = 8.575$ (kN/ m^2)

2.4 荷重強度の算出

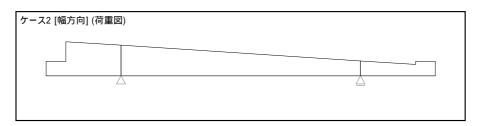
```
・輪荷重頂版中央時(幅方向)
     荷重の作用幅 B<sub>T1</sub> = B<sub>S</sub>-0.100-0.100 = 1.980-0.100-0.100 = 1.780 (m)
     荷重強度 q L1 = 84.930 (kN/m²)
     荷重強度 q<sub>R1</sub> = 84.930 (kN/m<sup>2</sup>)
     上載荷重 Q_1 = (q_{L1} + q_{R1}) \times B_s / 2 = (84.930 + 84.930) \times 1.780 / 2 = 151.175 (kN/m)
・輪荷重頂版端部時(幅方向)
     荷重の作用幅 B<sub>T2</sub> = B<sub>S</sub>-0.100-0.100 = 1.980-0.100-0.100 = 1.780 (m)
     荷重強度 q L2 = 131.661 (kN/m²)
     荷重強度 q<sub>R2</sub> = 38.199 (kN/m<sup>2</sup>)
     上載荷重 Q<sub>2</sub> = (q<sub>L2</sub>+q<sub>R2</sub>)×B<sub>s</sub>/2 = (131.661+38.199)×1.780/2 = 151.175 (kN/m)
・左側載荷重(幅方向)
     荷重の作用幅 B<sub>T3</sub> = B<sub>S</sub>-0.000-1.880 = 1.980-0.000-1.880 = 0.100 (m)
     荷重強度 q L3 = 50.455 (kN/m²)
     荷重強度 q R3 = 50.455 (kN/m²)
     上載荷重 Q<sub>3</sub> = (q_{L3} + q_{R3}) \times B_s / 2 = (50.455 + 50.455) \times 0.100 / 2 = 5.046 (kN/m)
・右側載荷重(幅方向)
     荷重の作用幅 B<sub>T4</sub> = B<sub>S</sub>-1.880-0.000 = 1.980-1.880-0.000 = 0.100 (m)
     荷重強度 q L4 = 50.455 (kN/m²)
     荷重強度 q<sub>R4</sub> = 50.455 (kN/m<sup>2</sup>)
     上載荷重 Q<sub>4</sub> = (q_{L4} + q_{R4}) \times B_s / 2 = (50.455 + 50.455) \times 0.100 / 2 = 5.046 (kN/m)
・延長方向全重(延長方向)
```

荷重の作用幅 B_{T5} = L_S-0.000-0.000 = 12.000-0.000 = 12.000 (m)

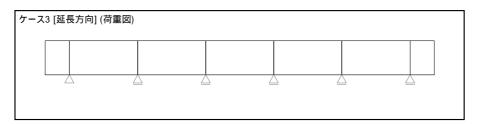
荷重強度 q₅ = Q₅/L₅ = 979.909/12.000 = 81.659 (kN/m²)


偏心距離(0.000)=0であるため等分布。

2.5 荷重図


本計算では、各スパン(杭で分けられた区間)毎の荷重は、座標法により面積(荷重強度と区間による面積)として算出し、図心位置も 座標法により算出している。

なお、3連モーメント式にて用いるモーメント荷重図は、50mmとスパン長の1/200のいずれか大きい値をピッチとしてモーメントを算出し作成している。


モーメント荷重図から算出する、面積や図心位置も全て座標法により算出している。

スパンNo	1	スパン長 L (m)	0.380	荷重構成点数	6
No.	X (m)	q (kN/m²)	No.	X (m)	q (kN/m²)
1	0.000	0.000	2	0.000	59.030
3	0.100	59.030	4	0.100	93.505
5	0.380	93.505	6	0.380	0.000
図心	G _X (m)	0.205	荷重[面積]	F (kN/m)	32.084
スパンNo	2	スパン長 L (m)	1.220	荷重構成点数	4
No.	X (m)	$q (kN/m^2)$	No.	X (m)	$q (kN/m^2)$
1	0.380	0.000	2	0.380	93.505
3	1.600	93.505	4	1.600	0.000
図心	G _X (m)	0.990	荷重[面積] F (kN/m)		114.076
スパンNo	3	スパン長 L (m)	0.380	荷重構成点数	6
No.	X (m)	$q (kN/m^2)$	No.	X (m)	$q (kN/m^2)$
1	1.600	0.000	2	1.600	93.505
3	1.880	93.505	4	1.880	59.030
5	1.980	59.030	6	1.980	0.000
図心	G _X (m)	1.775	荷重[面積]	F (kN/m)	32.084

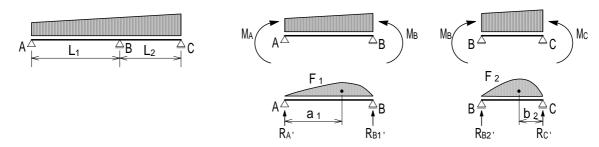
スパンNo	1	スパン長 L (m)	0.380	荷重構成点数	6
No.	X (m)	q (kN/m²)	No.	X (m)	q (kN/m²)
1	0.000	0.000	2	0.000	59.030
3	0.100	59.030	4	0.100	140.236
5	0.380	125.534	6	0.380	0.000
図心 G _X (m)		0.212	荷重[面積]	F (kN/m)	43.111
スパンNo	2	スパン長 L (m)	1.220	荷重構成点数	4
No.	X (m)	$q (kN/m^2)$	No.	X (m)	q (kN/m²)
1	0.380	0.000	2	0.380	125.534
3	1.600	61.476	4	1.600	0.000
図心	G _X (m)	0.920	荷重[面積]	F (kN/m)	114.076
スパンNo	3	スパン長 L (m)	0.380	荷重構成点数	6
No.	X (m)	q (kN/m²)	No.	X (m)	q (kN/m²)
1	1.600	0.000	2	1.600	61.476
3	1.880	46.774	4	1.880	59.030
5	1.980	59.030	6	1.980	0.000
図心	G _X (m)	1.789	荷重[面積]	F (kN/m)	21.058

- 11º5 N	,	スパン長		#=#-	,
スパンNo	1	L (m)	0.750	荷重構成点数	4
No.	X (m)	q (kN/m²)	No.	X (m)	q (kN/m²)
1	0.000	0.000	2	0.000	90.234
3	0.750	90.234	4	0.750	0.000
図心	G _X (m)	0.375	荷重[面積]	F (kN/m)	67.676
スパンNo	2	スパン長 L (m)	2.100	荷重構成点数	4
No.	X (m)	$q (kN/m^2)$	No.	X (m)	q (kN/m²)
1	0.750	0.000	2	0.750	90.234
3	2.850	90.234	4	2.850	0.000
図心	G _X (m)	1.800	荷重[面積]	F (kN/m)	189.492
スパンNo	3	スパン長 L (m)	2.100	荷重構成点数	4
No.	X (m)	q (kN/m²)	No.	X (m)	q (kN/m²)
1	2.850	0.000	2	2.850	90.234
3	4.950	90.234	4	4.950	0.000
図心	G _X (m)	3.900	荷重[面積]	F (kN/m)	189.492
スパンNo	4	スパン長 L (m)	2.100	荷重構成点数	4
No.	X (m)	q (kN/m²)	No.	X (m)	q (kN/m²)
1	4.950	0.000	2	4.950	90.234
3	7.050	90.234	4	7.050	0.000
図心	G _X (m)	6.000	荷重[面積]	F (kN/m)	189.492
スパンNo	5	スパン長 L (m)	2.100	荷重構成点数	4
No.	X (m)	q (kN/m²)	No.	X (m)	q (kN/m²)
1	7.050	0.000	2	7.050	90.234
3	9.150	90.234	4	9.150	0.000
図心	G _X (m)	8.100	荷重[面積]	F (kN/m)	189.492
スパンNo	6	スパン長 L (m)	2.100	荷重構成点数	4
No.	X (m)	q (kN/m²)	No.	X (m)	q (kN/m²)
1	9.150	0.000	2	9.150	90.234
3	11.250	90.234	4	11.250	0.000
図心	G _X (m)	10.200	荷重[面積]	F (kN/m)	189.492
スパンNo	7	スパン長 L (m)	0.750	荷重構成点数	4
No.	X (m)	q (kN/m²)	No.	X (m)	q (kN/m²)
1	11.250	0.000	2	11.250	90.234
3	12.000	90.234	4	12.000	0.000
図心	G _X (m)	11.625	荷重[面積]	F (kN/m)	67.676

3. 応力計算

3.1 応力計算について

張り出し部に関しては「片持ち梁」として計算し、中央部は端部に曲げモーメントが生じる「単純梁」か「連続梁」として計算を行う。


連続梁の計算は「3連モーメント公式」を用いて中央部支点の曲げモーメントを算出し、さらに各区間を端部に曲げモーメントが生じる単純梁として計算を行う。

本計算では、基礎スラブの断面形状や材質が、どの区間においても同一であることから断面二次モーメントは全て同じとして一般の 3連モーメント公式を変化させたものを用いる。

以下に3連モーメント公式と、本計算で用いている式を記す。

なお、下図右側は左図をA~B間とB~C間の2つに分けた図であり、さらにその右下図は分布荷重から求めた曲げモーメントで表される「モーメント荷重図」である。

3連モーメント公式は、このモーメント荷重図を基に計算する。

分布荷重が作用する連続梁

・3連モーメント公式

$$M_A \frac{L_1}{I_1} + 2M_B \left(\frac{L_1}{I_1} + \frac{L_2}{I_2} \right) + M_C \frac{L_2}{I_2} = -6 \left(\frac{R_{B1}}{I_1} + \frac{R_{B2}}{I_2} \right)$$

ただし、 $R_{B1'} = F_1 \cdot a_1 / L_1$ $A \sim B$ 間の外力のモーメント荷重図から求めたB点の反力 $R_{B2'} = F_2 \cdot b_2 / L_2$ $B \sim C$ 間の外力のモーメント荷重図から求めたB点の反力

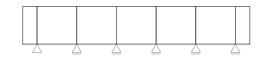
・断面二次モーメントが同一時の変化式

$$M_A \cdot L_1 + 2M_B(L_1 + L_2) + M_C \cdot L_2 = -6(R_{B1'} + R_{B2'})$$

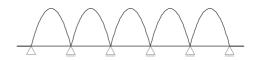
ここに、L1、L2 : 各杭間の距離

MA、MB、Mc: 各支点(杭)に生じる曲げモーメント

F1、F2 : モーメント荷重図の面積


a₁、b₂ :支点からモーメント荷重図図心までの距離

3.2 張出し部の計算(片持ち梁)


Case No	検討 方向	スパ ンNo	スパン長 L (m)	荷重 F (kN)	図心位置 G _x (m)	アーム長 a (m)	モーメント M(kN・m)	備考
1	幅	1	0.380	32.084	0.205	0.175	-5.615	$M = -32.084 \times 0.175$
1	幅	3	0.380	32.084	1.775	0.175	-5.615	$M = -32.084 \times 0.175$
2	幅	1	0.380	43.111	0.212	0.168	-7.243	M = -43.111 × 0.168
2	幅	3	0.380	21.058	1.789	0.189	-3.980	$M = -21.058 \times 0.189$
3	延長	1	0.750	67.676	0.375	0.375	-25.379	$M = -67.676 \times 0.375$
3	延長	7	0.750	67.676	11.625	0.375	-25.379	$M = -67.676 \times 0.375$

3.3 3連モーメント計算

ケース3 [延長方向] (荷重図)

ケース3 [延長方向] (モーメント荷重図)

スパ	スパン長		荷	計重図		モーメント荷重図				
ン No	L (m)	面積 F (kN)	図心位置 a (m)	支点反力 R _a (kN)	支点反力 R₅(kN)	面積 F (kN・m²)	図心位置 a (m)	支点反力 R _{A'} (kN・m²)	支点反力 R _{B'} (kN・m²)	
2	2.100	189.492	1.050	-90.076	-99.416	69.599	1.050	34.800	34.800	
3	2.100	189.492	1.050	-95.913	-93.579	69.599	1.050	34.800	34.800	
4	2.100	189.492	1.050	-94.746	-94.746	69.599	1.050	34.800	34.800	
5	2.100	189.492	1.050	-93.579	-95.913	69.599	1.050	34.800	34.800	
6	2.100	189.492	1.050	-99.416	-90.076	69.599	1.050	34.800	34.800	

 $-25.379 \times 2.100 + 2 \times M_2 \times (2.100 + 2.100) + M_3 \times 2.100 = -6 \times (34.800 + 34.800)$

 $M_2 \times 2.100 + 2 \times M_3 \times (2.100 + 2.100) + M_4 \times 2.100 = -6 \times (34.800 + 34.800)$

 $M_3 \times 2.100 + 2 \times M_4 \times (2.100 + 2.100) + M_5 \times 2.100 = -6 \times (34.800 + 34.800)$

 $M_4 \times 2.100 + 2 \times M_5 \times (2.100 + 2.100) + (-25.379) \times 2.100 = -6 \times (34.800 + 34.800)$

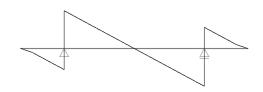
上記連立方程式の既知の値をまとめた式を以下に記す。

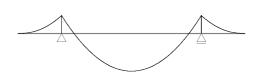
 $M_2 \times 8.400 + M_3 \times 2.100 = -364.304$

 $M_2 \times 2.100 + M_3 \times 8.400 + M_4 \times 2.100 = -417.600$

 $M_3 \times 2.100 + M_4 \times 8.400 + M_5 \times 2.100 = -417.600$

 $M_4 \times 2.100 + M_5 \times 8.400 = -364.304$

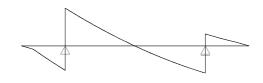

上記連立方程式を解くことにより各支点の曲げモーメントを導き出す。

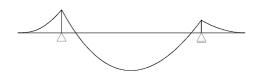

支点No	1	2	3	4	5	6
モーメント	-25.379	-35.186	-32.734	-32.734	-35.186	-25.379

3.4 せん断力・曲げモーメント

ケース1 [幅方向] (せん断力図)

ケース1 [幅方向] (曲げモーメント図)

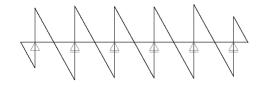




スパ	基準位置	スパン長	最	大曲げモーメ	ント	最小曲げモーメント			
ン No	SP(m)	L (m)	位置 X (m)	モーメント M(kN・m)	せん断力 S (kN)	位置 X (m)	モーメント M(kN・m)	せん断力 S (kN)	
1	0.000	0.380	0.000	0.000	0.000	0.380	-5.615	32.084	
2	0.380	1.220	0.990	11.782	0.000	1.600	-5.615	57.038	
3	1.600	0.380	1.980	0.000	0.000	1.600	-5.615	32.084	
	採用	値	0.990	11.782	0.000	1.600	-5.615	57.038	

ケース2 [幅方向] (せん断力図)

ケース2 [幅方向] (曲げモーメント図)





スパ	基準位置	スパン長	最	大曲げモーメ	ント	最小曲げモーメント			
い No	SP(m)	L (m)	位置 X (m)	モーメント M(kN・m)	せん断力 S (kN)	位置 X (m)	モーメント M(kN・m)	せん断力 S (kN)	
1	0.000	0.380	0.000	0.000	0.000	0.380	-7.243	43.111	
2	0.380	1.220	0.984	11.806	0.000	0.380	-7.243	66.258	
3	1.600	0.380	1.980	0.000	0.000	1.600	-3.980	21.058	
	採用	値	0.984	11.806	0.000	0.380	-7.243	66.258	

ケース3 [延長方向] (せん断力図)

ケース3 [延長方向] (曲げモーメント図)

スパ	基準位置	スパン長	最	大曲げモーメ	ント	最小曲げモーメント			
い No	SP(m)	L (m)	位置 X (m)	モーメント M(kN・m)	せん断力 S (kN)	位置 X (m)	モーメント M(kN・m)	せん断力 S (kN)	
1	0.000	0.750	0.000	0.000	0.000	0.750	-25.378	67.676	
2	0.750	2.100	1.748	19.580	0.000	2.850	-35.186	99.416	
3	2.850	2.100	3.913	15.789	0.000	2.850	-35.186	95.913	
4	4.950	2.100	6.000	17.008	0.000	4.950	-32.734	94.746	
5	7.050	2.100	8.087	15.789	0.000	9.150	-35.186	95.913	
6	9.150	2.100	10.252	19.580	0.000	9.150	-35.186	99.416	
7	11.250	0.750	12.000	0.000	0.000	11.250	-25.379	67.676	
	採用	値	10.252	19.580	0.000	2.850	-35.186	99.416	

3.5 応力集計表

# * = 51	最力	大曲げモーメン	/	最小曲げモーメント			
荷重ケース名称	位置 X (m)	モーメント M(kN・m)	せん断力 S (kN)	位置 X (m)	モーメント M(kN・m)	せん断力 S (kN)	
ケース1 [幅方向]	0.990	11.782	0.000	1.600	-5.615	57.038	
ケース2 [幅方向]	0.984	11.806	0.000	0.380	-7.243	66.258	
ケース3 [延長方向]	10.252	19.580	0.000	2.850	-35.186	99.416	

4 部材計算

4.1 部材条件

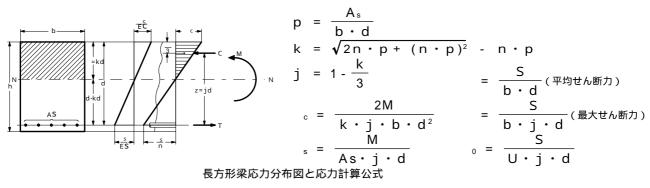
部材		鉄筋コンク!	ノート		無筋コンクリート			
項 目	記号	値	単位	備考				
許容曲げ圧縮応力度	ca	8.00	N/mm²					
許容せん断応力度	а	0.42	N/mm²					
許容付着応力度	0a	1.50	N/mm²					
許容支圧応力度	ba	6.30	N/mm²					
押抜きせん断応力度	a1'	0.85	N/mm²					
容許容引張応力度	sa	157.0	N/mm²					
容許容圧縮応力度	sa'	176.0	N/mm²					
ヤング係数比	n 15.0							
せん断力の算出方法		平均せん圏	力	最大せん断力				
その他の条件		付着応力度を無視できる。						

4.2 配筋条件

配筋方法	単鉄筋	全指定		2		奥外・幅内		訥		幅外・	奥内
10别力法	複鉄筋		全指定	2		奥尔	外・幅内			幅外·	奥内
計算方法			単鉄筋計算			複鉄筋計算			算		
鉄筋かぶり	上面	ф	富方向	76			延長方向		向		60
(mm)	下 面	幅方向		166		延長方向		向		150	
鉄筋呼び径	上面	幅方向		D16			延	長方	向	D1	6
亚大月刀叶丁 O*1至	下 面	幅方向		D16			延長方向		向	D1	6
鉄筋ピッチ	上面	幅方向		250		延長方向		向		200	
(mm)	下 面	幅方向		250		250	延長方向		向		200
かぶりの指定方法			鉄筋中心まで				鉄筋表面まで			で	

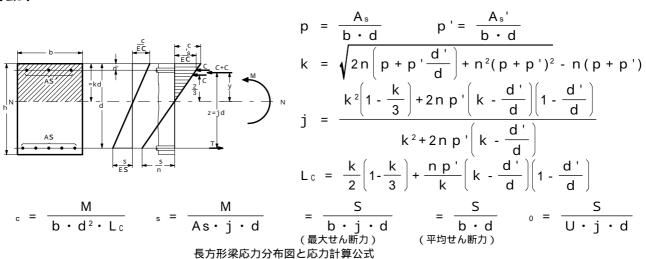
5 応力計算公式

5.1 無筋公式


断面係数算定式

断面係数 $Z = b \cdot h^2/6$ 部材断面積 $A = b \cdot h$

応力度算定式


曲げ引張応力度 。= M/Z せん断応力度 = S / A

5.2 単鉄筋公式

長方形梁応力分布図と応力計算公式

5.3 複鉄筋公式

5.4 応力検討

			許容値	ケース1	[幅方向]	ケース2	[幅方向]	ケース3 [延長方向]	
				計合他	下面引張	上面引張	下面引張	上面引張	下面引張	上面引張
断面	曲げモーメント	М	kN•m		11.782	-5.615	11.806	-7.243	19.580	-35.186
力	せん断力	S	kN		0.000	32.084	0.013	66.258	0.022	99.416
部材	単位部材幅	b	mm		1000	1000	1000	1000	1000	1000
材	部 材 厚	h	mm		350	350	350	350	350	350
	引張側 かぶり	С	mm		166	76	166	76	150	60
配筋計画	圧縮側 かぶり	c '	mm							
計	引張側 鉄筋・ピッチ				D16@250	D16@250	D16@250	D16@250	D16@200	D16@200
	圧縮側 鉄筋・ピッチ									
	引張側 鉄筋断面積	As	mm ²		794	794	794	794	993	993
゠゚゠゙	圧縮側 鉄筋断面積	A _{s'}	mm ²							
) タ	鉄 筋 周 長	U	mm		200	200	200	200	250	250
٦	有 効 部 材 厚	d	mm		184	274	184	274	200	290
	圧縮側 かぶり	d '	mm							
	ヤング係数比	n			15.00	15.00	15.00	15.00	15.00	15.00
	引張鉄筋比	р			0.00431	0.00290	0.00431	0.00290	0.00497	0.00342
係	圧縮鉄筋比	р'								
	中 立 軸 比	k			0.30070	0.25465	0.30070	0.25465	0.31872	0.27309
数	応 力 軸 比	j			0.89977	0.91512	0.89977	0.91512	0.89376	0.90897
		Lc								
	中立軸の位置		mm		55.359	69.800	55.359	69.800	63.744	79.196
	曲げ圧縮応力度	С	N/mm²	8.00	2.570	0.641	2.575	0.827	3.437	3.371
計	引張応力度	s	N/mm²	157.00	89.577	28.192	89.767	36.367	110.310	134.423
計算結果	圧縮応力度	s'	N/mm²	176.00						
果	せん断応力度		N/mm²	0.42	0.000	0.128	0.000	0.264	0.000	0.377
	付着応力度	0	N/mm²	1.50	0.000	0.640	0.000	1.321	0.000	1.509
	判	定			ОК	ОК	ОК	ОК	0 K	OUT
	計算	1 式					単鉄館	新計算		

6. 基礎杭の検討

6.1 基礎杭の支持力照査

杭の支持力照査は下記式を満足しているかで判定を行う。

$$P = (R \times L) / N R_a$$

ここに、P:杭の押し込み力(kN/本)

R : 支点反力 (kN/m) L : 作用幅・作用長 (m) N : 杭の本数 (本)

Ra: 杭の許容支持力 (kN/本)

杭の許容支持力 Ra = 244.310 (kN/本)

6.2 支点反力の集計と支持力照査

ケース名称	ケース1 [幅]	方向]		最大反力	R (kN/m)	89.122	
支点No	1	2					
支点反力 R(kN/m)	89.122	89.122					

 $P = (89.122 \times 12.000) \div 6 = 178.244(kN/4)$ $R_a = 244.310(kN/4)$

οк

ケース	人名称	ケース2 [幅]	方向]		最大反力	R (kN/m)	109.369	
支点	ξNo	1	2					
支点. R (kl		109.369	68.876					

 $P = (109.369 \times 12.000) \div 6 = 218.738(kN/4)$ $R_a = 244.310(kN/4)$

ОК

ケース名称	ケース3 [延	長方向]		最大反力	R (kN/m)	195.329	
支点No	1	2	3	4	5	6	
支点反力 R (kN/m)	157.752	195.329	188.325	188.325	195.329	157.752	

 $P = (195.329 \times 1.980) \div 2 = 193.376(kN/4x)$ $R_a = 244.310(kN/4x)$

ОК

6.3 杭と底版結合部の応力照査

(a) 底版コンクリートの垂直支圧応力度

$$_{cv} = P/(\cdot D^2/4)$$
 $_{cva}$

ここに、 _∞: コンクリートの垂直支圧応力度 (N/mm²)

P : 杭の最大押込み力 (N) D : 杭の外径 = 300.0 (mm)

cva: コンクリートの許容支圧応力度 (N/mm²)

許容支圧応力度 cva = 6.30 (N/mm²)

$$_{cv}$$
 = 218,738 ÷ (\times 300.0² ÷ 4) = 3.095(N/mm²) $_{cva}$ = 6.300(N/mm²) O K

(b) 底版コンクリートの押抜きせん断応力度

$$_{v} = P/(\cdot h(D+h))$$
 a

ここに、 √: コンクリートの押抜きせん断応力度 (N/mm²)

h : 押抜きせん断に抵抗する底版の有効厚さ = 250.0 (mm)

a: コンクリートの許容押抜きせん断応力度 (N/mm²)

許容押抜きせん断応力度 a = 0.85 (N/mm²)

$$_{v} = 218,738 \div (\times 250.0 \times (300.0 + 250.0)) = 0.506(N/mm^{2})$$
 $_{a} = 0.850(N/mm^{2}) \dots O K$